
MirChecker: Detecting Bugs in Rust Programs via Static Analysis
Zhuohua Li

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

Jincheng Wang
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

Mingshen Sun
Baidu Security

John C.S. Lui
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

ABSTRACT

Safe system programming is often a crucial requirement due to
its critical role in system software engineering. Conventional low-
level programming languages such as C and assembly are efficient,
but their inherent unsafe nature makes it undesirable for security-
critical scenarios. Recently, Rust has become a promising alternative
for safe system-level programming.While giving programmers fine-
grained hardware control, its strong type system enforces many se-
curity properties includingmemory safety. However, Rust’s security
guarantee is not a silver bullet. Runtime crashes and memory-safety
errors still harass Rust developers, causing damaging exploitable
vulnerabilities, as reported by numerous studies [29, 42, 47, 53, 54].

In this paper, we present and evaluate MirChecker, a fully
automated bug detection framework for Rust programs by perform-
ing static analysis on Rust’s Mid-level Intermediate Representation
(MIR). Based on the observation of existing bugs found in Rust code-
bases, our approach keeps track of both numerical and symbolic
information, detects potential runtime crashes and memory-safety
errors by using constraint solving techniques, and outputs infor-
mative diagnostics to users. We evaluate MirChecker on both
buggy code snippets extracted from existing Common Vulnera-
bilities and Exposures (CVE) and real-world Rust codebases. Our
experiments show that MirChecker can detect all the issues in
our code snippets, and is capable of performing bug finding in real-
world scenarios, where it detected a total of 33 previously unknown
bugs including 16 memory-safety issues from 12 Rust packages
(crates) with an acceptable false-positive rate.

CCS CONCEPTS

• Software and its engineering→ Automated static analysis;
• Security and privacy→ Software and application security.

KEYWORDS

static analysis, Rust, abstract interpretation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484541

ACM Reference Format:

Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C.S. Lui. 2021.Mir-
Checker: Detecting Bugs in Rust Programs via Static Analysis. In Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’21), November 15–19, 2021, Virtual Event, Republic of Korea.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3460120.3484541

1 INTRODUCTION

With the increase of software complexity, creating and maintaining
high-quality software has become notoriously difficult for develop-
ers. Software failures in security-critical scenarios may cause devas-
tating consequences. As an emerging programming language, Rust
provides a scalable and systematic way of dealing with software
errors. It integrates practical experience and research outcomes
of programming languages in the past several decades, enabling
programmers to build efficient programs safely. Its rigorous type
system and the unique ownership system can rule out manymemory
safety bugs at compile time. Different from other safe programming
languages, Rust is designed to be capable of low-level hardware
manipulations, and therefore it is a promising language for sys-
tem programming. Many companies and researchers are rewriting
their low-level components and embedded systems in Rust, some of
which have been a great success, such as the web browser engine
Servo [1], the operating system Redox OS [17] and Tock OS [39].
Android Open Source Project also supports Rust for developing
low-level OS components [51], and the adoption of Rust into the
Linux kernel is currently in progress [25, 40].

Although Rust makes a significant step towards secure system
programming, it is not a panacea. Empirical studies [29, 42, 47, 53,
54] have shown that Rust still has a considerable amount of security
issues. First, to provide more flexibility, Rust has an unsafe key-
word as an escape hatch, which enables extra powers for developers.
While unsafe code is necessary especially for low-level operations
such as dereferencing raw pointers, it may break the security guar-
antees and become the source of vulnerabilities. Existing studies
have shown that unsafe code is now the most common cause of
memory safety issues [53]. Second, even though one confines to
pure safe Rust, sometimes memory safety is guaranteed by stopping
program execution. For example, statically checking array bounds
is in general not feasible. Therefore, the Rust compiler generates
appropriate assertion statements to check these kinds of security
conditions at runtime. If an assertion statement fails, a runtime
panic is triggered. While aborting at runtime successfully prevents
memory corruption, however, for security-critical applications, “no-
panic policy” is usually enforced and therefore runtime crashes are
considered unacceptable.

https://doi.org/10.1145/3460120.3484541
https://doi.org/10.1145/3460120.3484541

To tackle the above problems, we propose using static analysis
to detect potential memory-safety issues and runtime panics before
the Rust programs are deployed. Our approach can be regarded
as a complement of Rust’s type system, enforcing more rigorous
security checks on Rust code. We argue that making a static ana-
lyzer dedicated for Rust by leveraging Rust’s type system has the
following advantages: (1) Precision: Rust is statically and strongly
typed, so the type system can provide more information to make
the analysis more accessible and more precise. A dedicated ana-
lyzer can also take advantage of the special patterns of bugs that
are unique to Rust programs (§ 3.1). (2) User-friendliness: The Rust
compiler explicitly inserts assertions to check safety conditions
dynamically in order to prevent undefined behaviors. These asser-
tions can be used by the static analyzer as conditions that should
be checked (§ 4.2.3), thus no manual annotations are needed. (3)
Efficiency: The ownership system statically determines the lifetime
of each variable, so the analyzer can safely clean up the storage
for variables that have gone out of their scopes. This dead variable
cleaning mechanism reduces memory consumption and speeds up
the analysis (§ 8.3).

In this work, we present MirChecker, a fully automated bug
detection tool designed for Rust programs. It is based on the theory
of Abstract Interpretation [18–20], which provides the foundation of
dataflow analysis by formalizing the relationship between analysis
and semantics. The core design of MirChecker follows the mono-
tone framework [46] that approximates each property of interest as
a complete lattice. Transfer functions are defined for each statement,
specifying how the properties are manipulated and transferred by
each statement. We propose to use a dedicated abstract domain that
gathers both numerical and symbolic values, where the former is
used for integer bounds analysis and the latter is mainly used as the
memory model. Then a fixed-point algorithm is executed to propa-
gate the properties through the control flow graph (CFG). When the
fixed-point algorithm terminates, it generates the invariants for the
whole program. Finally, we implement several bug detectors that
leverage the analysis result to perform bug detection.MirChecker
is implemented as an additional analysis pass of the official Rust
compiler, and is integrated with the official package manager Cargo
to provide a similar user interface with existing tools used by Rust
developers. The analysis is done on top of Rust’s Mid-level Interme-
diate Representation (MIR), which contains rich type information
that we can take advantage of. The bug detection procedure consid-
ers the common patterns that we observe from existing reported
bugs. To demonstrate the capability of MirChecker, we test our
tool on 10 buggy code snippets extracted from existing bugs and
more than 1,000 real-world Rust crates. Our evaluation shows that
MirChecker is able to detect all the issues in our artificial code
snippet dataset, and in particular, it finds 33 previously unknown
bugs including 16 memory-safety bugs in 12 real-world Rust crates.
With the help of some false-positive suppression heuristics, in our
experience, the manual effort of identifying bugs from generated
diagnostic messages is acceptable.

To sum up, our contributions are listed as follows:
• We present a new bug detection tool that is dedicated to Rust
programs. By utilizing static analysis and constraint solving
techniques, MirChecker can generate diagnostic messages

that assist developers to quickly pinpoint potential bugs in
their programs.
• We propose to use a dedicated abstract domain that keeps
track of both numerical and symbolic values in Rust pro-
grams. We show that this design captures the common pat-
tern of Rust vulnerabilities, and it is suitable for analyzing
the structure of Rust MIR.
• We implementMirChecker and evaluate its effectiveness
and performance in both artificial dataset and real-world
Rust codebases.MirChecker reveals 33 previously unknown
bugs including 16 memory-safety issues. We will open-
source our system and dataset (§ 13) which may become
the basis of other research in the future.

The rest of the paper is organized as follows. In Section 2 we give
the background knowledge of static analysis and the Rust program-
ming language. In Section 3 we briefly introduce the existing bugs
found in Rust. The design of MirChecker is presented in Section 4,
and we illustrate how Abstract Interpretation is performed on our
language model in Section 5. The algorithms and implementation
for processing the control flow graph and generating security con-
ditions is discussed in Section 6 and Section 7. Finally, we report
the experiments we have done and show the evaluation results in
Section 8.

2 BACKGROUND

In this section, we introduce some preliminaries of static bug-
finding techniques and the Rust programming language, especially
its novel ownership-based resource management model, how it
provides security guarantees, and why programs written in Rust
may still have bugs.

2.1 Static Analysis and Bug-Finding

Conventional bug-finding approaches such as manual code review
and unit testing are neither scalable enough to deal with sophis-
ticated software with enormous amounts of code, nor convinc-
ing enough to prove the absence of vulnerabilities. Among all ap-
proaches, static analysis is attractive for its following features. First,
static analysis is automated so it saves a lot of human effort. Second,
it statically detects bugs without running a program, so it does not
introduce extra runtime overhead. Finally, it can be used before the
program is deployed, preventing severe consequences caused by
critical bugs in advance. Many successful static bug-finding tech-
niques and frameworks have been used in the industry, such as
pattern matching [34], program inconsistency [27, 28], dataflow
analysis [36] and symbolic execution [37].

In general, static program analysis is an automated technique
that can extract runtime properties of programs without running
them. Unfortunately, according to Rice’s theorem [49], any non-
trivial semantic property of programs is undecidable, which means
perfectly precise static analysis is fundamentally impossible. Ab-
stract Interpretation [18–20] addresses this problem by maintaining
a sound over-approximation of the execution state at every program
point. It models the program execution in a certain abstract domain,
and each element of the domain represents a certain program state,
which is referred to as an abstract state. Classical literature usu-
ally represents an abstract state as a lattice (a partially ordered set

(𝑆𝑡𝑎𝑡𝑒, ⊑) with a join operator ⊔), while the statements of the pro-
gram semantics are modeled as abstract transfer functions over ab-
stract states. For example, interval analysis [18] computes for every
integer variable a lower bound and an upper bound for its possible
values. The abstract state is a lattice which consists of infinite num-
ber of intervals [𝑙, ℎ]. The order relation ⊑ is defined as interval
inclusion, i.e., the order of 𝑠1 = [𝑙1, ℎ1] and 𝑠2 = [𝑙2, ℎ2] is defined
as 𝑠1 ⊑ 𝑠2 ⇔ 𝑙1 ≥ 𝑙2 ∧ ℎ1 ≤ ℎ2. The join operator ⊔ is defined as
the union of two intervals, i.e., 𝑠1 ⊔ 𝑠2 = [𝑚𝑖𝑛(𝑙1, 𝑙2),𝑚𝑎𝑥 (ℎ1, ℎ2)].
Special elements ⊤ (top) and ⊥ (bottom) are defined to represent
the greatest and the least element in the lattice, respectively. Dur-
ing the analysis, each integer variable is assigned with an interval
which represents a sound approximation of its possible values.

The analysis is performed on the program’s control flow graph
(CFG), which contains information about the dependency relations
between each basic block. Each statement is associated with a
transfer function, which takes as input an abstract state and outputs
a new state.

The design of abstract domains and transfer functions highly
depends on applications. Numerous abstract domains are proposed
in order to capture different properties. For example, numerical
abstract domains such as interval [18], octagon [43], polyhedra [21],
and congruence [32] approximate the numerical value of each vari-
able. Some specialized abstract domains are designed for specific
tasks, such as pointer analysis and cache-based side channels de-
tection.

2.2 The Rust Programming Language

Rust is known for its ability to build programs that are both fast
and secure. The Rust type system rigorously enforces strict disci-
plines to eliminate security issues. The most unique feature that
distinguishes Rust is the ownership system, which enables Rust to
guarantee memory safety without performing garbage collection.

The main idea of the ownership system is derived from concepts
of linear logic [31] and linear types [52], which mean all values must
be used exactly once. However, linear type systems are too restric-
tive for real-life applications. Therefore, Rust uses the concept of
ownership, which relaxes the constraint of pure linearity. Under
the ownership system, each value (e.g., an integer on the stack)
has a unique owner (the variable binding). The scope of an owner
determines the lifetime of its value. Ownership can bemoved (trans-
ferred) between owners. Once the ownership is moved, the value is
no longer accessible from the original variable binding. Rust also
supports references that temporarily borrow a value from the owner
without invalidating it. References are either mutable or immutable.
The regulation is “no mutable aliasing”, meaning that it is safe to
have more than one reference to a value as long as the value is
read-only; when the value is writable, only one single reference is
allowed to exist. The restrictive rules for move and borrow are the
key to achieving memory safety. On the one hand, the lifetime of
each value is kept track of by its owner, and therefore the lifetime
of a reference cannot exceed the value it points to. This effectively
prevents many memory safety issues caused by dangling pointers.
On the other hand, neither reference counting nor garbage collec-
tion is needed because resources are bounded with the lifetime of
objects. The Rust compiler can automatically deallocate resources

once their owners go out of their scopes. Note that all of the above
are done at compile time thus no runtime overhead is introduced.

Although Rust has made significant progress in achieving safe
system programming, it also provides an unsafe keyword which
may breach the safety promise and lead to undefined behaviors.

3 MOTIVATION

Before we elaborate on the details of MirChecker, we first give
an overview of the existing vulnerabilities of Rust. Specifically,
we illustrate our observation which motivates the design of Mir-
Checker. Then we give two examples to illustrate why Rust’s type
safety guarantee is not sufficient for security-critical scenarios, and
how static analysis may provide mitigation.

3.1 Rust Bugs Overview

Numerous empirical studies [29, 42, 47, 53, 54] have shown that
despite Rust’s security features, vulnerabilities still exist in real
world. By carefully inspecting the existing vulnerabilities, we focus
on two categories of bugs:

Runtime Panics. In general, Rust’s type system cannot en-
force all the security conditions at compile time. Therefore, some
conditions such as array bounds checking and integer overflow
detection are postponed until runtime. The compiler automatically
instruments assertions that would abort the execution if a security
condition is violated. We observe that incorrectly manipulated in-
teger values cause most runtime panics. For example, arithmetic
overflow, out-of-bounds indexing and division by zero are all re-
lated to integers. Although aborting execution prevents memory
corruption, it still causes denial-of-service attacks. According to a
third-party bug collection repository trophy-case1, about 40% of
bugs are categorized as arithmetic error or out-of-range access.

Lifetime Corruption. Traditional memory corruption issues
like use-after-free and double-free are well addressed by Rust’s
ownership system in the safe realm. However, the side-effects of
the ownership system and the capability of unsafe together lead
to a new pattern of dangling-pointer issues: Unsafe code may first
corrupt the ownership system, causing invalid pointers or shared
mutable aliases, then the ownership system automatically drops
memory which further leads to double-free or use-after-free errors.
This kind of memory corruption pattern is first reported by Xu et
al. [22, 53]. In this paper, we will name it as lifetime corruption.

Based on the observations, we aim to combine numerical and
symbolic static analysis, as they can capture both the paradigms of
the above two kinds of errors. First, we use numerical static analysis
to get bounds for each integer variable, such that potential runtime
panics caused by integer-related operations can be detected. Second,
we use symbolic static analysis to keep track of the ownership of
heap memory. Especially, we focus on several unsafe functions
that may create aliases of heap memory, as lifetime corruptions
are usually related to shared mutable aliases and dropping heap
memory.
1https://github.com/rust-fuzz/trophy-case

https://github.com/rust-fuzz/trophy-case

3.2 Motivating Examples

We give two existing vulnerabilities found in Rust, an integer over-
flow and a use-after-free, which respectively lie in the two cate-
gories we mentioned above. Unrelated details have been removed
for simplicity of presentation. Listing 1 shows the integer overflow
(CVE-2017-1000430 [10]) discovered in the rust-base64 crate.

1 fn encoded_size(bytes_len: usize, config: Config) -> usize {
2 let rem = bytes_len % 3;
3
4 let complete_input_chunks = bytes_len / 3;
5 let complete_output_chars = complete_input_chunks * 4;
6 let printing_output_chars = if rem == 0 {
7 complete_output_chars
8 } else {
9 complete_output_chars + 4
10 };
11 ...
12 }

Listing 1: Function encoded_size could overflow usize and

eventually lead to buffer overflow.

The vulnerable function encoded_size takes an integer bytes_-
len as input. This integer is first divided by 3 and then multiplied
by 4, and this computation may cause an integer overflow. This
function is used to calculate the size of a heap buffer that needs to
be reserved, and thus eventually leads to a smaller buffer. Accessing
this buffer may result in a buffer over-read.

Numerical static analysis is able to detect this kind of vulnerabil-
ities because the possible values of each variable are computed. For
example, a static analyzer with interval abstract domain may reason
about this code snippet as follows. First, according to the type of
the input integer, the range of bytes_len can be represented as an
interval [0, 264 − 1] (we assume a 64-bit platform). Then, accord-
ing to the interval arithmetic, after the division and multiplication,
the range becomes [0, (264 − 1)/3 × 4]. Finally, depending on the
value of rem, the possible outcome is either [0, (264 − 1)/3 × 4] or
[4, (264−1)/3×4+4]. By taking the least upper bound of these two
intervals, we obtain an over-approximation [0, (264 − 1)/3 × 4 + 4],
which is larger than the valid range of type usize. A static analyzer
can help to identify this potential integer overflow.

1 fn from(buffer: Buffer) -> Vec<u8> {
2 let mut slice = Buffer::allocate(buffer.len);
3 let len = buffer.copy_to(&mut slice);
4 unsafe {
5 Vec::from_raw_parts(
6 slice.as_mut_ptr(), len, slice.len())
7 }
8 }

Listing 2: Mutable aliases created by unsafe could cause a

use-after-free.

Our second example shows a use-after-free (CVE-2019-
16140 [13]) found in the chttp crate, as shown in Listing 2.
The from function first allocates a buffer slice and returns a
vector composed by the unsafe function Vec::from_raw_parts,
which obtains the ownership of slice. This unsafe behavior breaks
the consistency of the ownership system, i.e., a chunk of memory
now has two owners simultaneously. When the function from

returns, the automatic dropping of slice deallocates the memory
thus makes the returned vector invalid, causing a use-after-free
when accessing the return value later.

Several existing use-after-free bugs (e.g. CVE-2019-15552 [11]
and CVE-2019-15553 [12]) are due to the similar reason: the unsafe
code corrupts the ownership system, then the automatic dropping
mechanism causes dangling pointers. While this kind of problems is
difficult to be detected bymanual inspection, static analysis can help.
The idea is to analyze the control flow graph (CFG) of a program
and symbolically keep track of the ownership of each allocation.
In the above example, by analyzing the ownership transitions, it
is possible for a static analyzer to see that both the return value
and slice point to the same chunk of memory. Then the memory
deallocation statement (Drop) followed by the return statement
(Return) corrupts memory.

4 DESIGN

In this section, we first illustrate the design choices of our static
analysis methodology and their advantages. Then we present the
high-level architecture of MirChecker.

4.1 Methodology

In general, performing static analysis requires modeling program
semantics. We propose to combine numerical static analysis and
symbolic execution, and perform analysis on top of Rust MIR.

In contrast to leveraging existing efforts on static program anal-
ysis such as IKOS [7], Crab [14] and KLEE [8], which perform static
analysis on either LLVM [38] bitcode or self-defined intermediate
representation, we decide to develop MirChecker from scratch
based on Rust MIR for the following reasons. First, Rust MIR re-
duces most of the complex syntax of Rust into a much simpler core
language, more importantly, it preserves type information and de-
bugging data that we can take advantage of. For static analyzers, in
general, the more information they have, the easier it is to find er-
rors and suppress false positives. Second, although Rust uses LLVM
as its backend, we find that most existing tools are dedicated to
C/C++ and cannot directly work for Rust. Possible problems span
from the lack of support of certain LLVM IR patterns to the lack of
suitable standard library models [30]. Third, off-the-shelf tools are
usually only compatible with specific versions of LLVM, thus users
may have to compile their code using outdated Rust compilers in
order to meet the requirements.

We perform integer bounds analysis using numerical abstract
domains based on the observation that most runtime panics are
caused by integer-related issues such as arithmetic errors and out-of-
bounds access. Especially, numerical abstract domains are suitable
for modeling low-level security-critical Rust programs, like em-
bedded systems, where integer manipulations are usually heavily
used. While performing numerical analysis, we construct symbolic
formulas according to MIR’s data structures. We also define a set
of syntax-driven reduction rules that symbolically evaluate the for-
mulas whenever possible (§ 5.2). As we will show, the combination
of numerical and symbolic analysis mutually improves each other.
On the one hand, Rust MIR contains complicated structures like
references and arrays, which are problematic for numerical abstract
domains, as they usually only support arithmetic operations and do

not understand the underlying memory layouts. Therefore, we uti-
lize symbolic evaluation to work as the memory model and improve
the precision of numerical analysis. On the other hand, the com-
putational complexity of computing numerical abstract domains
is usually much lower than SMT solving. Therefore our approach
is more scalable than pure symbolic execution, where symbolic
formulas may become too long and storing such information and
solving constraints eventually become infeasible because of path
explosion.

4.2 Architecture

The whole analysis process follows the canonical three-phase de-
sign of static analyzers: (1) user interface, (2) static analyzer and (3)
bug detection, as depicted in Figure 1.

Rust
Source
Code

Preprocess CFG

Static	Analyzer

Analysis
Options

Cargo	Subcommand

Resolve Dependencies

Initialize Analyzer

Dispatch Source Files

Fixed-Point Algorithm

MIR Visitors

Update
Abstract Values

Static Analyzer Bug Detection

Global
Context

Constraint	Solver

Analysis
Options

User Interface

Bug	Detectors

Diagnostics

Figure 1: The architecture of MirChecker.

4.2.1 User Interface. We aim to provide a straightforward user
interface such that users can use MirChecker together with other
tools in the Rust ecosystem with minimal effort. Our user interface
is a customized subcommand of Cargo, the official packagemanager
of Rust. It reads a Rust crate as input, together with user-provided
options that configure the behaviors of the analysis procedure
(e.g., the entry point of the analysis). Cargo is called to automat-
ically resolve dependencies of the input crate and collect all the
needed source files. Then according to the user-provided options,
an instance of static analyzer with appropriate configurations is ini-
tialized. We utilize the dependency information to dispatch source
files, i.e., we only invoke the static analyzer on source files that
are in the current Rust crate being analyzed, and use the vanilla
Rust compiler to compile the remaining dependencies. This way,
the amount of expensive analysis can be significantly reduced and
only diagnostic messages for the targeting crate will be emitted.

4.2.2 Static Analyzer. Behind the user interface, the actual static
analyzer is implemented as a modified Rust compiler with an addi-
tional analysis pass. The design goal is to extract both numerical
and symbolic information from a control-flow graph (CFG). The
analysis procedure is inserted as a customized callback function for
the Rust compiler, which is invoked automatically after the com-
piler gathers all the information of the source code, thus we are able
to access the internal compiler data structures and perform static
analysis. The static analysis procedure first preprocesses the CFG
for each function generated by the compiler and creates a weak
topological ordering (WTO) [6] of the basic blocks (§ 6.1). Then
according to the ordering, it adopts a fixed-point algorithm that
iteratively executes Abstract Interpretation (§ 5) for each basic block
and updates the result until it reaches a fixed point.

In the meantime, the global context works as an in-memory
database for two purposes: (1) It stores the analysis results during
the analysis phase, and further provides them to the bug detectors
in the bug detection phase. (2) It caches data that is repetitively
used during the analysis (e.g., the WTO for each function) in order
to avoid redundant computation.

4.2.3 Bug Detection. After the analysis finishes, several bug de-
tectors are invoked to detect potential vulnerabilities based on the
analysis result, and diagnostic messages are generated accordingly.
The bug detectors use constraint solving techniques to determine
whether security conditions are violated. We consider two cate-
gories of security conditions: (1) runtime assertions and (2) common
memory-safety error patterns. First, the Rust compiler automat-
ically generates runtime assertions for security conditions that
cannot be checked at compile time (e.g., out-of-bounds accesses
and integer overflows). We utilize these assertions as verification
conditions. The violation of this kind of conditions can trigger run-
time panics but should not cause memory corruption. Second, we
detect potential memory-safety issues based on the observations of
the common pattern of lifetime corruptions (§ 3.1).

Finally, the diagnostics emission mechanism leverages the Rust
compiler’s internal infrastructures, therefore the diagnostic mes-
sages are structured and informative. The produced diagnostics
show what kind of error might occur and its location. The expres-
sive diagnostics can help users to pinpoint potential bugs in their
programs quickly.

5 ABSTRACT INTERPRETATION

In this section, we introduce how our abstract domain is designed
to capture both numerical and symbolic values during the analysis,
and in particular, how they mutually improve each other. We define
our minimal language model and memory model for Rust MIR.
Based on these models, we introduce our abstract domain and
illustrate how numerical and symbolic information can be extracted.

5.1 Language Model

We introduce a simple language that captures the core syntax of
Rust MIR. The purpose of it is twofold. First, on top of this language
model, we can define abstract domains and transfer functions. Sec-
ond, it is used to construct symbolic expressions, asMirChecker’s
memory model (§ 5.2) symbolically evaluates these expressions to
mimic memory accesses. Branch conditions are also stored as sym-
bolic expressions and used for refining the analysis result (§ 6.1).
Due to the complex nature of Rust, it is not realistic to model all
the language features, thus we only extract necessary components
useful for our purposes.

A Rust program consists of several functions and global variables.
MirChecer uses a unified way to deal with both of them because
the initialization procedure of each global variable can be viewed
as a function as well. Each function can be represented as a control
flow graph (CFG), where each node is a basic block containing one
or more statements without any jumps. At the end of each basic
block, there is one terminator, which is a special statement that
represents a jump (either conditional or unconditional) among the
control flow. We model the core syntax of the statements in Backus-
Naur Form (BNF) as shown in Figure 2. For the convenience of

our implementation, the syntax mainly captures the skeleton of
Rust MIR. Since the design principle of MirChecker is to apply
numerical static analysis to Rust programs, we significantly simplify
the basic data types that we care about: only integers (including
Boolean and signed/unsigned integer data types of various lengths).

Constant 𝑐 ∈ Z
BasicBlock 𝑏 ∈ Z
Type 𝜏 ::= Bool | I8 | U8 | I16 | U16 | . . .
Local 𝑣 ∈ {𝑣0, 𝑣1, 𝑣2, . . .}
Function 𝑓 ∈ {𝑓1, 𝑓2, 𝑓3, . . .}
BinOp ⊕ ::= + | - | × | ÷ | % | AND | OR |

XOR | SHIFT
CmpOp ⊗ ::= < | ≤ | == | > | ≥ | ≠
Operand 𝑜𝑝 ::= 𝑐 | 𝑝
Place 𝑝 ::= 𝑣 | ∗𝑝 | 𝑝.𝑛 | 𝑝 [𝑣]
Rvalue 𝑟 ::= 𝑜𝑝 | &𝑝 |!𝑜𝑝 | −𝑜𝑝 | 𝑜𝑝1 ⊕ 𝑜𝑝2 |

𝑜𝑝1 ⊗ 𝑜𝑝2 | 𝑜𝑝 as 𝜏

Statement 𝑠 ::= 𝑠1;𝑠2 | 𝑝 = 𝑟

Terminator 𝑡 ::= Call(𝑓 , [𝑜𝑝1, 𝑜𝑝2, . . .], (𝑝,𝑏)) |
Drop(𝑝) | Assert(𝑜𝑝) | Goto(𝑏)
SwitchInt(𝑜𝑝, [𝑏1, 𝑏2, . . .])

Figure 2: Core syntax of the Rust language model.

We list the main syntax and its semantics that we are interested
in most as follows:

(1) Assignment (𝑝 = 𝑟) overwrites the value in 𝑝 with a new
value expressed by the expression 𝑟 . The left-hand side 𝑝 is
a Place, which can be either a single local variable Local or
a qualified path representing accessing a field (𝑝.𝑛), deref-
erencing a pointer (∗𝑝), or indexing an array (𝑝 [𝑣]). The
right-hand side 𝑟 is an Rvalue, which expresses operations
performed on operands such as arithmetic (𝑜𝑝1 ⊕ 𝑜𝑝2), com-
parison (𝑜𝑝1 ⊗ 𝑜𝑝2), logical inversion (!𝑜𝑝), negation (−𝑜𝑝),
getting reference (&𝑝) and type conversion (𝑜𝑝 as 𝜏). Note
that Rust MIR intentionally distinguishes Place and Rvalue
to prevent Rvalues from being nested in one another. The
type system of Rust guarantees that 𝑝 and 𝑟 must be of the
same data type.

(2) Binary operation (𝑜𝑝1 ⊕ 𝑜𝑝2) applies the binary operation
⊕ to two operands 𝑜𝑝1 and 𝑜𝑝2. Each operand can be a
Constant, or a Place. The binary operator ⊕ includes nor-
mal arithmetic operators such as addition and subtraction.
Therefore the data type of the two operands and the result
are all integers.

(3) Comparison operation (𝑜𝑝1 ⊗ 𝑜𝑝2) similarly applies the com-
parison operation ⊗ to its two operands. It differs from binary
operations in that it generates a Boolean value instead of
an integer value. The results of comparison operations are
usually used as branch conditions that may change the flow
of control.

(4) Function call (Call(𝑓 , [𝑜𝑝1, 𝑜𝑝2, . . .], (𝑝, 𝑏))) calls a function
𝑓 with a list of arguments [𝑜𝑝1, 𝑜𝑝2, . . .]. The return value is
assigned to 𝑝 in basic block 𝑏. This is also used to allocate
heap memory.

(5) Drop (Drop(𝑝)) explicitly deallocates the memory of 𝑝 which
is allocated at runtime.

(6) Assertion (Assert(op)) continues execution if the condition
stored in 𝑜𝑝 is true, otherwise it triggers a runtime panic.

(7) Goto (Goto(b)) unconditionally jumps to the successor basic
block 𝑏.

(8) SwitchInt (SwitchInt(𝑜𝑝, [𝑏1, 𝑏2, . . .])) is a conditional
branch instruction which transfers control flow to one of
the basic blocks in the target list [𝑏1, 𝑏2, . . .]. At runtime,
the discriminant operand 𝑜𝑝 is evaluated into an integer
value, and the control flow jumps to the basic block found
by indexing the target list using this value. The last element
in the target list is used for the default branch.

5.2 Memory Model

When analyzing a statement with memory accesses such as deref-
erencing pointers, a memory model is needed to describe how a
static analyzer should handle these memory operations. For ex-
ample, a statement a[0] = *p reads memory by dereferencing
a pointer p, and writes the result to an array element. However,
deciding which memory cell is accessed when encountering a mem-
ory read/write operation is notoriously difficult for static analysis,
because a memory address may depend on the program’s input and
is usually only determined at runtime, therefore it is impossible for
a static analyzer to know it at runtime. Traditionally, static analysis
handles memory accesses with the assistance of a sound points-to
analysis [44]. However, points-to analysis is usually used on low-
level intermediate representations with a simple load/store memory
model, where complex language abstractions have been lowered
down into simple primitives such as reading/writing registers. On
the contrary, Rust MIR has a much more complicated memory ac-
cess paradigm than just load and store: it does not view memory
as a single flat region. Instead, memory is treated as structured
objects, each of which is identified using a Place expression, which
contains a base variable and a list of projection elements (e.g., index,
dereference) that “project out” from the base variable.

We therefore aim to implement a simple but rigorous memory
model by leveraging the symbolic values that we construct during
the analysis. When accessing a Place, we construct a symbolic ex-
pression for it and use it as an abstract memory address, i.e., we use
the expression as the key of thememory lookup table.We determine
whether two abstract memory addresses are equivalent by syntacti-
cally comparing the equality of the two expressions. This design
may lose considerable precision because we may incorrectly regard
two equivalent expressions as inequivalent due to the symbolic
alias issue [4]. However, as we will show, we mitigate this problem
by simplifying symbolic expressions using a set of reduction rules
(§ 5.5).

5.3 Abstract Values and Abstract Domain

Let 𝐶𝐹𝐺 be a given control-flow graph that is being analyzed, we
define P to be the set of all Place occurring in𝐶𝐹𝐺 . To keep track of
all the abstract values for each variable, we maintain a lookup table
𝜎𝑏 : P ↦→ V for each basic block 𝑏, where V is the set representing
all possible abstract values that a Place can be assigned to. We also

define two special values ⊥ ∈ V, meaning an uninitialized value
and ⊤ ∈ V, meaning all possible values.

The abstract values in V comprise of two disjoint categories:
numerical values NV and symbolic values SV. Numerical values are
used to capture the integer bounds of each variable, while symbolic
values are constructedmainly to express abstract memory addresses
(§ 5.2) and branch conditions (§ 6.1).
• Numerical abstract values in NV can be any valid integer
constraint representation definitions used in classical Ab-
stract Interpretation literature, such as intervals, octagons,
and polyhedra. The goal is to abstractly bound numerical
values for each variable, so that the constraints on integer
bounds can provide a sound approximation of the program
execution. We omit the definition here and refer the readers
to any standard texts about Abstract Interpretation [18–20].
• Symbolic abstract values in SV represent a set of possible
values on the right-hand side of an assignment. Therefore
the syntax of symbolic abstract values are defined according
to the Rvalue in the language model as stated in Figure 2.
We store the symbolic values because many manipulations
in Rust MIR cannot be easily modeled as integer bounds
constraints, e.g., references, pairs, and indices. More specif-
ically, when analyzing an assignment statement 𝑝 = 𝑟 in
basic block 𝑏, if the assigned value is not an integer, then
we update the program state 𝜎𝑏 [𝑝] = 𝜎𝑏 [𝑝] ∪ 𝑟 . Hence for
each memory path 𝑝 , there is a set of corresponding possible
symbolic values.

We define abstract state AS as amap lattice [44] consisting of the
set of mappings from P to V. Similarly, Our abstract domain AD is
defined as amap lattice consisting of mappings from B toAS, where
B is the set of all the basic blocks in𝐶𝐹𝐺 . Intuitively, an element in
AS is a lookup table, which maps from variables to abstract values,
depicting the current execution state of the program. The abstract
domain ADmaintains a lookup table for each basic block, denoting
different abstract states at the program point immediately after
each basic block. The design of our abstract domain contains both
numerical and symbolic values. In this paper, we informally call
the numerical part of the abstract domain as numerical abstract
domain, and the symbolic part as symbolic abstract domain.

Based on the above definitions, we also define transfer functions,
which model each statement as an abstract state transformer. The
input to the transfer functions represents the abstract state at the
program point immediately before the statement, and the output
represents the abstract state at the program point immediately after
the statement. The behaviors of the transfer functions follow the
above description of the language semantics in Section 5.1. For
example, when analyzing an assignment statement, the transfer
function looks up the abstract value at the left-hand side and up-
dates it with the right-hand side. The transfer functions update
abstract state according to either numerical or symbolic informa-
tion from each statement. We illustrate how the information is
extracted in Section 5.4 and Section 5.5.

An example given in Figure 3 shows the abstract values in the
first iteration of the analysis. Figure 3 (a) is the compiled MIR of
our example Rust code, which is simply a for loop with constant
loop bound. Figure 3 (b) and (c) show the corresponding numerical

abstract values and symbolic abstract values respectively. As shown
in the figure, MirChecker’s abstract domain models the execution
state at the end of each basic block using two disjoint set.

5.4 Numerical Analysis

When the transfer functions analyze each statement, the numerical
values are extracted and stored in the numerical abstract domain.
The distinction between numerical values and others comes nat-
urally from the different semantics of different operations. For
example, computing the addition of two variables is obviously a
numerical operation, while taking a reference is not. Our numer-
ical abstract domain implementation (§ 7.1) mainly supports the
following operations:

𝑑𝑠𝑡 ::= 𝑠𝑟𝑐 (Assignment)
𝑑𝑠𝑡 ::= 𝑜𝑝1 ⊕ 𝑜𝑝2 (Binary arithmetic)
𝑑𝑠𝑡 ::= −𝑜𝑝 (Negation)

Therefore, when analyzing a statement, the transfer functions
will first distinguish what kind of operations the statement does,
and whether it should be handled numerically. More accurately, if
a statement is an assignment, and the right-hand side is a variable
of type integer, or a binary arithmetic operation or a negation, then
the left-hand side will be handled by our numerical abstract domain.
Otherwise, symbolic expressions are constructed and stored in the
symbolic domain. In Figure 3, variable _1 and _5 are all handled by
the numerical domain.

5.5 Symbolic Analysis

As mentioned above, Rust MIR still contains complex operations
that cannot be easily modeled numerically. We therefore construct
symbolic expressions and mainly use them for (1) constructing
abstract memory addresses (§ 5.2), and (2) expressing branch con-
ditions (§ 6.1). To address the symbolic alias issue [4], we define
a set of reduction rules to simplify symbolic expressions as much
as possible, as shown in Figure 4. We use Γ to denote the analysis
environment, which is the current state of both numerical and sym-
bolic domain. Notation Γ ⊢ J𝑒K means the evaluation of expression
𝑒 in the environment Γ.

The reduction rules simplify symbolic expressions according
to the language semantics. For example, rule Dref expresses the
fact that dereferencing a reference to a variable is equivalent to
reading the variable itself. This helpsMirChecker to understand
memory accesses. For example, in Figure 3, variable _2 is a reference
to _1. At line 6, 14 and 18, dereferencing _2 results in variable _-
1, and thus appropriate abstract values can be updated. During
the reduction procedure, information from numerical analysis is
helpful, for example, rule Comp says if the comparison result can
be derived from integer bounds analysis, then we can reduce the
comparison expression into the Boolean result. If the simplified
result is an integer, the value is moved into numerical abstract
domain. For example, in Figure 3, the numerical values of variable
_3 and _4 come from the symbolic reduction.

6 ALGORITHM

In this section, we discuss the essential algorithms of MirChecker
and the rules for bug detection. Additionally, we show how to

{_1 = 0}

{_1 = 0, _4 = 0}

{_1 = 0, _4 = 0, _3 = 0}

{_1 = 0, _4 = 0, _3 = 1, _5 = 1}

{_1 = 1, _4 = 0, _3 = 1, _5 = 1}

{_2 = ref _1}

{_2 = ref _1, _3 = _4 < 5}

{_2 = ref _1, _3 = _4 < 5}

{_2 = ref _1, _3 = _4 < 5}

{_2 = ref _1, _3 = _4 < 5}

bb0:
 _1 = const 0_i32;
 _2 = &mut _1;

bb1:
 _4 = (*_2);
 _3 = Lt(move _4, const 5_i32);
 switchInt(_3) -> [false: bb2, otherwise: bb3];

bb2:
 return;

bb3:
 _5 = CheckedAdd((*_2), const 1_i32);
 goto -> bb4;

bb4:
 (*_2) = move (_5.0: i32);
 goto -> bb1;

(a) Sample MIR code (b) Numerical abstract domain (c) Symbolic abstract domain

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Abstract Values in MirCheckerName of basic block

Place expression
Numerical abstract value

bb0:

bb1:

bb2:

bb3:

bb4:

Numerical abstract state

Place expression Symbolic abstract value

Symbolic abstract state

Figure 3: The abstract states in the first iteration.

𝑟 ∈ Rvalue 𝑝 ∈ Place 𝑟 = &𝑝
∗𝑟 ⇒ 𝑝

Deref

𝑜𝑝1, 𝑜𝑝2 ∈ Operand 𝑏 : Bool Γ ⊢ J𝑜𝑝1 ⊗ 𝑜𝑝2K = 𝑏

𝑜𝑝1 ⊗ 𝑜𝑝2 ⇒ 𝑏
Cmp

𝑝 ∈ Place 𝑣 ∈ Local 𝑐 ∈ Constant Γ ⊢ J𝑝 [𝑣]K = 𝑐

𝑝 [𝑣] ⇒ 𝑐
Index

𝑝 ∈ Place 𝑛 ∈ Z 𝑐 ∈ Constant Γ ⊢ J𝑝.𝑛K = 𝑐

𝑝.𝑛 ⇒ 𝑐
Field

Figure 4: Reduction rules for symbolic expressions.

leverage the lifetime information encoded in MIR to clean up states
for dead variables.

6.1 CFG Traversal

Similar to most of the existing static analysis tools,MirChecker
traverses the CFG and iteratively runs static analysis until it reaches
a fixed point. Inside the Rust compiler, the CFG for each function is
encoded as a set of MIR data structures. It is a directed graph with
nodes representing basic blocks and edges representing the control
flow transitions. Note that a CFG contains the dependency relation
between each basic block. Therefore, intuitively, the best traversing
strategy is to follow the topological ordering of the CFG, such that
the abstract value of a basic block only needs to be recomputed if its
predecessors are updated. However, this method is not applicable
since a CFGmay have loops and thus the topological ordering is not
well-defined. We tackle this problem by applying a classical strategy
called weak topological ordering (WTO) [6], which is a generalized
version of topological ordering applicable for all directed graphs.

The fixed-point algorithm is presented in Algorithm 1. The input
CFG is first preprocessed by sorting all its basic blocks according

to the weak topological ordering. The result is a list of topologically
sorted strongly connected components (SCC) in the CFG. Each SCC
is defined recursively as either a single basic block, meaning se-
quential execution, or a list of other SCC, indicating a loop. Then
according to the ordering, an MIR visitor traverses through each
SCC. For a sequential execution, the visitor simply visits each state-
ment and updates the abstract values according to our language
model (§ 5.1). For a loop, the MIR visitor traverses it repeatedly and
will only proceed if a fixed point of this loop is reached. We also
implement the standard widening and narrowing techniques [44],
which guarantee that the fixed point can always be reached and
thus our analyzer will not fall into infinite loops. Briefly speaking,
if the number of fixed-point iterations exceeds a threshold, this
technique will “widen” the variable to its maximum, then “narrow”
it down for several iterations to get better precision. The default set-
tings of both the widening threshold and the number of narrowing
iterations can be changed throughMirChecker’s command-line
options.

At the end of each basic block, there is a special statement
called terminator which directs the control flow. Conditional
branches are represented by a SwitchInt terminator. The
SwitchInt(𝑜𝑝, [𝑏1, 𝑏2, . . .]) terminator has two arguments: a
discriminant operand and a target list. At runtime, 𝑜𝑝 will be eval-
uated to an integer, which is used as the index to get a target basic
block in the target list. Then the control flow jumps to the target.
To exploit the information available in conditionals and make the
numerical analysis more precise, we insert appropriate constraints
to narrow the integer bounds. The constraints are generated by
getting the symbolic values of 𝑜𝑝 . For example, the control-flow
transition of an if-else statement if cond {. . . } else {. . . }
will be lowered into a terminator SwitchInt(𝑐𝑜𝑛𝑑, [𝑏1, 𝑏2]), which
jumps to basic block 𝑏1 if 𝑐𝑜𝑛𝑑 is false, and to basic block 𝑏2 oth-
erwise. We therefore generate two constraints 𝑐𝑜𝑛𝑑 == 0 and
𝑐𝑜𝑛𝑑 == 1, and apply them to basic block 𝑏1 and 𝑏2 respectively.
By utilizing the branch conditions, the numerical analysis can be

Algorithm 1: Fixed-point algorithm forMirChecker
Input: Control Flow Graph: 𝐶𝐹𝐺
Output: Abstract State: 𝑆𝑡𝑎𝑡𝑒

Init: 𝑆𝑡𝑎𝑡𝑒 [𝑛] ←
{
⊤ if 𝑛 = Entry(CFG)
⊥ otherwise

1 Function FixedPoint(𝐶𝐹𝐺):
2 𝑊𝑇𝑂 ← ComputeWTO(CFG)
3 foreach 𝑠𝑐𝑐 ∈𝑊𝑇𝑂 do

4 VisitSCC(𝑠𝑐𝑐)

5 return

6 Function VisitSCC(𝑠𝑐𝑐):
7 match 𝑠𝑐𝑐 with

8 𝑛𝑜𝑑𝑒 → VisitNode(𝑛𝑜𝑑𝑒)

9 𝑐𝑖𝑟𝑐𝑙𝑒 → VisitCircle(𝑐𝑖𝑟𝑐𝑙𝑒)

10 return

11 Function VisitNode(𝑛𝑜𝑑𝑒):
12 𝑝𝑟𝑒_𝑐𝑜𝑛𝑑 ← ⊔

𝑛∈Predecessors(node) 𝑆𝑡𝑎𝑡𝑒 [𝑛]
13 AnalyzeBasicBlock(𝑛𝑜𝑑𝑒 , 𝑝𝑟𝑒_𝑐𝑜𝑛𝑑)
14 Function VisitCircle(𝑐𝑖𝑟𝑐𝑙𝑒):
15 ℎ𝑒𝑎𝑑 ← 𝑐𝑖𝑟𝑐𝑙𝑒 .ℎ𝑒𝑎𝑑

16 𝑝𝑟𝑒_𝑐𝑜𝑛𝑑 ← ⊔
𝑛∈Predecessors(head) 𝑆𝑡𝑎𝑡𝑒 [𝑛]

17 while 𝑡𝑟𝑢𝑒 do

18 AnalyzeBasicBlock(ℎ𝑒𝑎𝑑 , 𝑝𝑟𝑒_𝑐𝑜𝑛𝑑)
19 foreach 𝑠𝑐𝑐 ∈ 𝑐𝑖𝑟𝑐𝑙𝑒.𝑏𝑜𝑑𝑦 do

20 VisitSCC(𝑠𝑐𝑐)

21 𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 ← ⊔
𝑛∈Predecessors(head) 𝑆𝑡𝑎𝑡𝑒 [𝑛]

22 if 𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 ⊑ 𝑆𝑡𝑎𝑡𝑒 [ℎ𝑒𝑎𝑑] then
23 break

24 else

25 𝑝𝑟𝑒_𝑐𝑜𝑛𝑑 ← Widening(pre_cond, new_state)
26 Function AnalyzeBasicBlock(𝑏𝑏, 𝑝𝑟𝑒_𝑐𝑜𝑛𝑑):
27 𝑚𝑖𝑟_𝑣𝑖𝑠𝑖𝑡𝑜𝑟 .𝑝𝑟𝑒_𝑐𝑜𝑛𝑑 = 𝑝𝑟𝑒_𝑐𝑜𝑛𝑑
28 foreach 𝑠𝑡𝑚𝑡 ∈ 𝑏𝑏.𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 do

29 𝑆𝑡𝑎𝑡𝑒 [𝑏𝑏] ← Transfer(mir_visitor, stmt)
30 Transfer(mir_visitor, bb.terminator)

more precise, which further provides more information for the
symbolic reduction procedure, as mentioned in Section 5.5.

6.2 Interprocedural Analysis

When the MIR visitor encounters a function call, the target function
will only be analyzed if it is within the current crate that is being
analyzed and its location can be statically determined. Otherwise,
if the target function is from dependency crates or it is looked up
at runtime (i.e., dynamic dispatch through vtable), the function call
is skipped for simplicity. Note that this design obviously introduces
unsoundness and makes our analysis result unreliable. However,
thanks to Rust’s capabilities of “zero-cost abstractions”, in real-
world Rust code bases, most functions are implemented using static
dispatch for better performance. In addition, this design prevents
MirChecker from analyzing unrelated code from external depen-
dencies and avoids path explosion. Since the target function may
be generic, the MIR visitor leverages the Rust compiler’s internal

API GenericArg::expect_ty to determine the real type of each
argument according to the current context. After gathering all the
information of function arguments, the target function is analyzed
based on a new context, and the MIR visitor will handle the side-
effects of the callee function and make appropriate updates in the
caller’s context.

We provide some special handlers for some functions that are
commonly used but hard to be analyzed, especially for some stan-
dard library functions such as index and as_mut_ptr. These han-
dlers work as the model of the corresponding functions by resem-
bling the behaviors of them.MirChecker internally maintains a
map between such special functions and their handlers, and will
simply execute the handler instead of launching a new analysis if
the functions are encountered.

Recursive functions may result in infinite loops during inter-
procedural analysis.MirChecker resolves infinite recursions by
maintaining a list that simulates the call stack. Before analyzing
each function, the function name is pushed into the list and popped
out after the analysis of this function finishes.When the function be-
ing analyzed has already been in the list,MirChecker will directly
return because a recursive call is detected. Although this approach
introduces imprecision as recursive calls are skipped, it effectively
improves the performance and guarantees the convergence of the
analysis.

6.3 Verification Conditions for Bug Detectors

After the fixed-point algorithm finishes, we detect potential bugs
based on the analysis result. The bug detectors leverage the infor-
mation from both numerical and symbolic domain, and verify some
security conditions through SMT solving. Diagnostic messages are
produced if the SMT solver affirms that these security conditions
can be potentially violated. We describe the security conditions
that are verified by each kind of bug as follows.
Runtime Panics. The runtime panic detector traverses through the
CFG and gets all the conditions from the Assert(𝑐𝑜𝑛𝑑) terminators.
Then it translates the integer bounds from the numerical abstract
domain and the symbolic values such as comparison expressions
from the symbolic abstract domain into SMT formulas. An SMT
solver take these SMT constraint formulas as input, and verifies the
satisfiability of the negation of each condition 𝑐𝑜𝑛𝑑 . If satisfiable,
meaning that the assertion condition is possible to be violated, the
bug detector will generate diagnoses accordingly.
Lifetime Corruptions. To detect lifetime corruptions, Mir-
Checker internally maintains a list of unsafe functions such as
Vec::from_raw_parts. During the symbolic analysis, the transfer
functions gather the ownership transitions made by these unsafe
functions. For example, function Vec::from_raw_parts acquires
the ownership from its first argument and returns an “owned” value
with this ownership. The lifetime corruption bug detector verifies
whether the original owner is used (e.g., used in a Return termina-
tor) after the ownership has been transferred.

6.4 Eliminating Dead Variables

One advantage of using Rust MIR to perform static analysis
is that the lifetime of each variable is explicitly encoded by

the StorageLive and StorageDead statements. Therefore Mir-
Checker can safely clean up the storage of dead variables without
performing live variables analysis [44], thereby achieving better
performance. Cleaning dead variables is especially important for
complex numerical abstract domains where the more variables they
maintain, the more computational resources they consume. More
specifically, if dead variable cleaning is enabled, whenever Mir-
Checker encounters a StorageDead statement, it searches for the
dead variable in both numerical and symbolic domains. If the vari-
able is not depended by any other values, then its storage is cleared.
As we will show in our evaluation (§ 8.3), eliminating dead variables
reduces the analysis time and memory consumption for complex
numerical abstract domains such as octagon and polyhedra.

7 IMPLEMENTATION

MirChecker is implemented in Rust (in 11,927 LOC) as a cus-
tomized callback function on top of the official Rust compiler. It
also cooperates with Cargo, the official package manager for Rust,
providing a similar user experience to existing tools integrated
with Cargo, such as the Rust linter Clippy. We implement our
numerical abstract domain based on a third-party library called
Apron [35], which provides a universal API for several numerical
abstract domains including intervals [18], octagon [43] and polyhe-
dra [21]. Since Apron is written in C, we develop a thin wrapper
for the Apron API using Rust Foreign Function Interface (FFI) in
order to use it in Rust. We also use GNU Multiple Precision Arith-
metic Library (GMP) to handle arbitrary precision integers. The
symbolic evaluation mechanism and the memory model is imple-
mented based on MIRAI [15], a contract-based verification tool for
Rust, which provides a general framework for traversing the data
structures of Rust MIR. We achieve SMT solving by integrating the
SMT solver Z3 [23] through the FFI binding of its C API. When
launching bug detectors, the numerical constraints maintained by
Apron and the symbolic constraints in the symbolic domain are
translated into Z3 constraint formulas. Then the Z3 solver solves
the constraints, and we accordingly generate diagnostic messages.

7.1 Binding External C APIs

In order to provide support for numerical abstract domains, we use
a third-party library Apron [35]. To integrate it into our project,
on the one hand, we need to implement FFI bindings for it because
Apron is written in C. On the other hand, we need a “converter” to
translate expressions from Rust to their equivalent form in Apron
and vice versa. In Apron, each numerical abstract value is inter-
nally represented by a conjunction of a set of linear constraints on
numerical properties of program variables:

{∧
𝑗

(∑
𝑖 𝛼𝑖 𝑗𝑝𝑖 ⊙ 𝛽 𝑗

)}
,

where 𝛼, 𝛽 ∈ Z are constants, 𝑝 ∈ Place is a symbolic path, and
⊙ ∈ {<, ≤,==,≠} is a comparison operator. For example, state-
ments a=b+1; c=a+b; will be stored as a linear constraint system
(𝑎 − 𝑏 = 1) ∧ (𝑎 + 𝑏 − 𝑐 = 0). In MirChecker we define data struc-
tures to represent linear constraint systems. During the numerical
analysis,MirChecker constructs linear constraints and converts
them into the format that Apron understands. After the fixed-point
algorithm terminates, the constraints are further translated into
Z3 expressions so we can leverage the power of constraint solving
provided by Z3.

Table 1: Datasets used in our experiments.

Dataset # of crates

Code snippets extracted from existing bugs 10
Crates collected from crates.io ∼1000
Crates searched on GitHub 25

7.2 Converting Abstract Values into SMT

Formulas

As mentioned earlier, upon the termination of analyzing each func-
tion, we identify bugs by constructing SMT constraint formulas.
The SMT solver Z3 is used to solve these constraints and check
whether potential bugs may occur. A Z3 SMT formula is an abstract
syntax tree (AST), where tree leaves are symbols or concrete data
while other nodes are operators. The SMT constraint formulas are
constructed from different sources: (1) The integer bounds com-
puted by the numerical analysis. These constraints can be translated
easily as they have already been represented by linear constraint
systems. (2) The valid range of integer types. For example, a variable
of type u8 can hold values between 0 and 255. (3) The comparison
expressions from the symbolic analysis. These expressions usu-
ally come from branch conditions and express the precondition
of executing a basic block. All of these constraints are translated
bottom-up into Z3 ASTs.

8 EVALUATION

We evaluate the effectiveness and performance of our work from
two different perspectives. First, to evaluate MirChecker’s ability
of discovering currently known bugs, we test our tool on a synthetic
dataset gathered from existing empirical studies on Rust security
issues. To reflect the essence of each bug, we manually remove
irrelevant code to make each test case “minimal”. Our final dataset
contains four memory-safety bugs and six runtime panic bugs. All
of them can be successfully detected byMirChecker. Second, to
evaluateMirChecker’s bug-finding ability in real life, we collect
real-world Rust crates on the official crate registry2 based on the
following requirements: (1) It contains code that performs computa-
tion instead of just macros or trait definitions. (2) It is unrelated to
floating points operations, multi-threading, asynchronous program-
ming, etc., since these are not our concern. We query the API of
crates.io and collect around 1,000 crates that meet our requirements.
We also collect crates by searching for the “unsafe” keywords on
GitHub, because the improper use of unsafe is the primary source
of memory-safety problems.

The datasets used in our experiments are listed in Table 1. All
the experiments are done on a machine with a 3.70 GHz Intel Xeon
E5-1630 v4 CPU and 16GB RAM, running Gentoo Linux (kernel
5.10.27).

8.1 Effectiveness

In our experiments, we evaluate more than 1,000 real-world Rust
crates collected from both the official crate registry and GitHub.
For each crate, we extract all the public functions and methods
and use them as the entry functions of static analysis. In total, 17
2https://crates.io

crates.io
https://crates.io

Table 2: Evaluation result overview. The types of bugs include division-by-zero (DBZ), integer-overflow (IOV), out-of-range

access (OOR), use-after-free (UAF), double-free (DF), and other panics not covered above (PANIC). Different numerical abstract

domains are compared, including interval (ITV), linear congruence (LCG), octagon (OCT), and polyhedra (POL).

Crate Name

Bugs

Confirmed

Warnings Reported

(w or w/o false-positive suppression)

Elapsed Time

(CPU seconds)

Peak Memory Usage

(MB) Bug Type

of

Lines

of

Entries

All-time

Downloads
*

ITV LCG OCT POL ITV LCG OCT POL ITV LCG OCT POL

bitvec 1 26/70 23/66 22/59 22/59 1537.30 1520.37 1476.36 1472.79 322.91 323.98 345.27 326.58 DBZ 18139 359 5,722,435
brotli 3 433/633 411/598 416/605 416/605 10053.76 11315.82 10359.07 9530.12 501.43 502.66 923.61 578.20 IOV, OOR 108793 708 1,149,250
byte-unit 1 14/21 14/21 14/21 14/21 31.11 32.97 32.70 31.06 191.59 192.88 193.38 189.68 IOV 1420 45 850,943
bytemuck 2 10/15 10/15 10/13 10/13 13.20 12.84 11.18 10.56 156.00 157.40 157.39 157.20 PANIC 1320 29 3,389,482
executable-memory 2 2/2 2/2 2/2 2/2 27.90 27.36 27.19 26.95 189.70 190.38 191.18 190.46 IOV 160 15 1,092
gmath 15 57/57 67/67 67/67 67/67 24.92 163.83 351.74 155.54 126.47 129.77 188.66 133.68 UAF 292 17 N/A
qrcode-generator 1 14/15 14/14 14/14 14/14 247.31 827.33 825.70 825.91 290.47 290.14 290.73 290.88 IOV 722 42 24,201
r1cs 2 13/22 11/20 11/20 11/20 3008.19 2854.08 2727.46 2989.46 233.29 231.16 234.70 233.54 DBZ, OOR 4733 212 6,400
runes 2 107/219 103/212 106/218 106/218 385.51 730.68 754.09 679.79 163.27 163.47 621.36 360.71 IOV, DBZ 4180 188 5,114
safe-transmute 2 16/16 16/16 16/16 16/16 50.32 225.17 228.41 157.95 198.04 198.18 429.35 238.79 DBZ 1451 59 141,907
scriptful 1 3/7 3/7 3/7 3/7 19.37 18.91 19.16 19.13 155.51 156.54 156.89 156.39 PANIC 446 26 451
spglib 1 10/11 10/11 10/11 10/11 223.41 215.65 215.31 215.05 488.06 496.58 503.98 490.59 DF 441 14 471
* Sources: https://crates.io, as of September 13, 2021. N/A means the corresponding crate is not in the registry.

runtime panics and 16 memory-safety issues are detected in 12
crates. We list the detailed statistics in Table 2, where column “Bugs
Confirmed” and “Warnings Reported” show the number of true
positives we found and the number of warnings in the emitted diag-
nostic messages. After the diagnostic messages are generated, we
manually inspect them to determine whether they are true positives
or false positives. Since MirChecker outputs structured and infor-
mative diagnostic messages, identifying a true positive is relatively
easy by reviewing the adjacent lines of code around the reported
error site. Our experience is that an expert can inspect hundreds
of diagnostics generated from 20 crates within 1 hour. Once we
have confirmed a true positive, we write a simple code example that
triggers the bug as a proof-of-concept (In Table 2, we only classify
a warning as a true positive if we can really trigger it). All the bugs
and the code examples were reported to the project maintainers.
At the time of writing, 25 bugs in 7 crates were confirmed and 24
of them have been fixed by the maintainers.

8.2 False Positives Suppression

Most of the generated warnings are false positives. After care-
fully examining the diagnostic messages and the corresponding
source code, we find the following reasons that cause the false
alarms: (1) The nature of static analysis inevitably introduces im-
precision, since the algorithm of MirChecker is to provide an
over-approximation of program execution. (2) Many reported er-
ror sites can indeed be triggered. For example, some macros (e.g.,
panic!(), unreachable!()) in Rust cause a process to panic by
design. But they are not considered as bugs since the authors in-
tentionally implemented them. (3) A single bug may be triggered
through different execution paths, resulting in multiple error sites
being reported.

We thus implement some strategies to suppress the false posi-
tives. When MirChecker produces diagnoses, we record the root
cause of each warning. E.g., arithmetic overflow, bitwise overflow,
inline assembly, division-by-zero, running into panic code, etc. We
classify all the diagnoses according to their cause, and provide
command-line options for users to suppress some specific cate-
gories of warnings. For example, if a user is prototyping a program

and temporarily uses many panic!() or unreachable!(). They
may want to suppress all the warnings caused by running into
panic code, so they can focus on detecting other errors.

In Table 2, we list the number of warning emitted with and
without applying the false-positive suppression. In our experiments,
we suppress warnings caused by bitwise overflow and running
into panic code, because bitwise operations are not well-supported
by Apron and thus MirChecker generates many false alarms.
Note that in our evaluations, MirChecker performs poorly on
crate brotli and runes. Even after applying our false-positive
suppression strategies, MirChecker still performs a high false-
positive rate at around 95.1%. However, if we exclude these two
outliers, the false-positive rate reduces to around 79.2%.

8.3 Performance

We measure the analysis time and peak memory usage of Mir-
Checker with different configurations, as shown in Table 2. We
repeat our experiments using four different kinds of numerical
abstract domains (interval, linear congruence, octagon, and poly-
hedra) and compare their precision and performance. As seen in
Table 2, interval and linear congruence consume less resources
but output relatively coarse-grained diagnostics thus more manual
inspection is needed, while octagon and polyhedra are in contrast.
Users can make a trade-off between computational efficiency and
precision by choosing different options through MirChecker’s
user interface.

The elapsed time and memory consumption vary significantly
among different test cases. We find that the main factor that af-
fects the performance is the number of security conditions that
MirChecker checks. Since MirChecker mainly checks numerical
related conditions, in general, the more numerical operations a
crate makes, the more resources its analysis consumes.

In addition, we test the performance of our dead variable cleaning
mechanism (§ 6.4). We re-evaluate all the test cases in Table 2
when disabling dead variable cleaning, and compute the geometric
mean for each abstract domain. We summarize both the results
where dead variable cleaning is enabled (E) and disabled (D) in
Figure 5. As one can observe, by taking advantage of the lifetime

https://crates.io

information provided by the Rust type system, the dead variable
cleaning mechanism inMirChecker reduces both the analysis time
and memory consumption by 9.14% and 13.31% respectively for the
octagon domain, and 16.89%, 11.03% respectively for the polyhedra
domain. However, for interval and linear congruence, there is no
significant difference in memory consumption. Also, the frequent
cache cleaning operations introduce overhead so that there is only
a slight improvement in execution time. We thus implement dead
variable cleaning as optional, and users can choose whether it is
enabled throughMirChecker’s user interface.

Interval LinearCongruences Octagon Polyhedra
0

100

200

300

400

500

Abstract Domains

Ex
ec
ut
io
n
Ti
m
e
[S
ec
on

d] Elapsed Time (E)

Elapsed Time (D)

0

100

200

300

400

Pe
ak

M
em

or
y
U
sa
ge
[M

B]

Memory Usage (E)
Memory Usage (D)

Figure 5: Performance of dead variable cleaning.

9 CASE STUDY

To provide a more concrete understanding of the effectiveness, we
present two bugs detected by MirChecker, which respectively
belong to runtime panics and lifetime corruption (§ 3.1). We also
attachMirChecker’s diagnostic messages in the comments to show
how they help developers to pinpoint potential bugs quickly. For
more examples, we refer the readers to our source code repository
(§ 13).

Listing 3 gives an integer overflow which further leads to an
out-of-bounds access. At line 17, a vector img_raw is allocated, and
its length is computed at line 16. The computation of length is a
multiplication of size which comes from the user input. There-
fore, it is possible to construct malformed input and trigger an
integer overflow at line 16, resulting in a smaller img_raw. Further
manipulations of img_raw will cause an out-of-bounds access. As
shown in the comments, MirChecker produces a warning which
correctly detects the integer overflow, and pinpoints exactly where
the problem is in a particular line of code. Note that for Rust, array
bounds checking is always performed at runtime, therefore this bug
only causes a runtime panic instead of leading to a memory-safety
vulnerability.

Listing 4 gives a use-after-free vulnerability found during our ex-
periments. First, a buffer ptr is allocated, then the ownership of ptr
is transferred to a vector mat using Vec::from_raw_parts. When
the function matrix2invert returns, mat is deallocated thus the

1 // The output of MirChecker:
2 // warning: [MirChecker] Possible error: attempt to compute

`move _29 * move _30`, which would overflow↩→
3 // --> src/lib.rs:445:18
4 // |
5 // 445 | let length = size * size;
6 // | ^^^^^^^^^^^
7 fn to_image_inner(qr: QrCode, size: usize) -> Result<Vec<u8>,

QRCodeError> {↩→
8 // Fix by adding the following:
9 // if size >= 2usize.pow((size_of::<usize>() * 4) as u32) {
10 // return Err(QRCodeError::ImageSizeTooLarge);
11 // }
12 let margin_size = 1;
13 let s = qr.size();
14 let data_length = s as usize;
15 let data_length_margin = data_length + 2 * margin_size;
16 let point_size = size / data_length_margin;
17 if point_size == 0 {
18 return Err(QRCodeError::ImageSizeTooSmall);
19 }
20 let margin = (size - (point_size * data_length)) / 2;
21 let length = size * size;
22 let mut img_raw: Vec<u8> = vec![255u8; length];
23 // Some manipulations on vector `img_raw`
24 // Skip for simplicity of presentation
25 //
26 Ok(img_raw)
27 }

Listing 3: An integer overflow and out-of-bounds access in

crate qrcode-generator.

return value ptr becomes a dangling pointer. Further usage of ptr
will cause a use-after-free. As shown in the comments,MirChecker
detects this memory-safety issue, and pinpoints the variable whose
memory is not properly managed.

1 // The output of MirChecker:
2 // warning: [MirChecker] Possible error: double-free or

use-after-free↩→
3 // --> wasm/matrix2.rs:32:3
4 // |
5 // 32 | ptr
6 // | ^^^
7 pub unsafe fn matrix2invert(a: *mut f32) -> *mut u8 {
8 let a = std::slice::from_raw_parts(a, LEN);
9
10 let det = a[0] * a[3] - a[2] * a[1];
11
12 if det == 0.0 {
13 return std::ptr::null_mut();
14 }
15
16 let ptr = alloc(SIZE);
17 // Fix this by replacing line 19 with the following line:
18 // let mat = slice::from_raw_parts_mut(ptr as *mut f32, LEN);
19 let mut mat = Vec::from_raw_parts(ptr as *mut f32, LEN, LEN);
20 let det = 1f32 / det;
21
22 mat[0] = a[3] * det;
23 mat[1] = -a[1] * det;
24 mat[2] = -a[2] * det;
25 mat[3] = a[0] * det;
26
27 ptr
28 }

Listing 4: A use-after-free in crate gmath.

10 DISCUSSION

Amount and Severity of Bugs. In this work, most of the bugs
detected by MirChecker are not memory-safety bugs. Instead,
they trigger runtime panics and abort the execution. Not only is

the amount of unveiled bugs much smaller than many bug-finding
efforts for C/C++, but most of the bugs also do not lead to damaging
vulnerabilities. We argue that this is expected since Rust is memory-
safe by default, therefore is reasonable that finding bugs in Rust
programs requires more costs. This result coincides with other bug-
finding techniques deployed in Rust, such as fuzzing [3], where
most bugs detected only cause denial-of-service attacks. From the
perspective of Rust developers, this is a promising result because it
reflects the fact that the codebases in the Rust ecosystem are pretty
safe, and exploitable memory-safety bugs are rarely seen.
Limitations and Future Work. While we believe our mechanism
captures the common pattern of currently known Rust vulnera-
bilities, the main limitation of our tool is that it is not exhaustive.
The memory model we use is lightweight and syntax-driven thus it
cannot handle all the memory operations. Many advanced features
like closures and higher-order functions are ignored for simplicity.
Dynamic dispatch of methods, inline assembly, concurrency, and
FFI are out of the ability of MirChecker. As a result,MirChecker
does not prove the the absence of bugs, and may miss bugs be-
cause of the unsupported features. However, we argue that, on the
one hand, our goal is to provide a useful bug detection tool rather
than enforcing rigorous formal verification. The missing support
for these features will not impede the execution of MirChecker,
thus it can still produce useful diagnoses. On the other hand, since
the structure of Rust MIR is complicated and subject to change, it
requires too much engineering effort to be fully handled. Alterna-
tively, we adopt our simple model and implement MirChecker as
a handy tool for Rust developers. Note that further improvement
and refinement of MirChecker are our future work.

11 RELATEDWORK

Existing works on bug detection in Rust. Existing studies usu-
ally extend off-the-shelf static or dynamic analysis tools to perform
bug detection on either Rust MIR or LLVM IR generated by the
Rust compiler. For example, Lindner et al. [41] use the famous
symbolic execution engine KLEE [8] to verify whether a program
is panic-free. SMACK [48] is a translator from the LLVM IR into
the Boogie intermediate verification language [24], and now it has
been extended to support Rust [5]. Rust2Viper [33] and its suc-
cessor Prusti [2] is a compiler plugin that utilizes user-provided
specifications and a symbolic execution engine called Viper [45] to
verify functional correctness properties. CRUST [50] is a test gen-
eration and model checking tool. It filters necessary functions that
contain unsafe code and translates them into C code. The gener-
ated tests are checked by an off-the-shelf model checker CBMC [9].
Dewey et al. [26] propose a fuzzing technique to detect runtime
execution crashes. Qin et al. [47] build two bug detectors for use-
after-free and double-lock bugs according to their empirical studies
on Rust security issues. SafeDrop [22] focuses on the deallocation
of heap memory and detects memory corruptions by performing
alias analysis and taint analysis on Rust MIR. Miri [16] is a Rust
MIR interpreter that dynamically executes Rust code according
to the operational semantics. When the interpreter gets stuck, it
means there is an undefined behavior with respect to the opera-
tional semantics. Miri is designed for finding undefined behaviors
instead of bug detection and has totally different functionalities

from any static analyzers. MIRAI [15] is a formal verification tool
that performs symbolic execution. It has a well-defined memory
model for heap allocation. It enables users to add annotations and
utilizes the SMT solver Z3 [23] to prove the safety of Rust programs.

Our work differs from the previous efforts in that we build our
tool based on Rust MIR so we fully leverage the type information
provided by the Rust compiler. Also,MirChecker detects a broader
category of bugs than most of the previous works do, and it does
not require manual annotations such that one can easily use it with
minimal effort.
Empirical studies on Rust security issues. Empirical studies [29,
42, 47, 53, 54] on Rust security issues summarize some currently
known bugs. Xu et al. [53] collect bug reports from public datasets
which contain all existing CVEs of Rust, and manually analyze
the root cause and taxonomy. Qin et al. [47] manually analyze
hundreds of unsafe code usages in several open-source Rust projects,
revealing the impacts of unsafe code onmemory/concurrency safety.
Evans et al. [29] statistically analyze the usage of unsafe code in
real-world Rust libraries and applications and claim that although
Rust provides a way to encapsulate unsafe code, the propagation
of unsafeness becomes a big challenge.

12 CONCLUSION

In this paper, we presentedMirChecker, a numerical static anal-
ysis tool based on a combined abstract domain, which captures
both numerical and symbolic values and mutually improves each
other. It assists Rust developers in detecting potential defects in
their programs. We implementedMirChecker based on existing
numerical abstract domains and constraint solvers and evaluated it
by analyzing real-world Rust codebases. MirChecker successfully
revealed 17 runtime panics and 16 memory-safety issues that were
unknown previously. Finally, we open-sourcedMirChecker with
various examples and datasets.

13 AVAILABILITY

The source code, test scripts, and detailed information about bugs
that we found are available online at:

https://github.com/lizhuohua/rust-mir-checker

ACKNOWLEDGMENTS

The work of John C.S. Lui is supported in part by the RGC R4032-18.
We would also like to express our gratitude to our shepherd Prof.
Erik van der Kouwe and anonymous reviewers for their constructive
comments. Thanks to all the crate maintainers who responded to
our bug reports.

REFERENCES

[1] Brian Anderson, Lars Bergstrom, Manish Goregaokar, Josh Matthews, Keegan
McAllister, Jack Moffitt, and Simon Sapin. 2016. Engineering the Servo Web
Browser Engine Using Rust. In Proceedings of the 38th International Conference
on Software Engineering Companion (ICSE ’16). 81–89.

[2] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. 2019.
Leveraging Rust Types for Modular Specification and Verification. Proceedings of
the ACM on Programming Languages 3, OOPSLA (2019), 1–30.

[3] Rust Fuzzing Authority. 2021. Trophy Case. https://github.com/rust-fuzz/trophy-
case

[4] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. Comput.
Surveys 51, 3 (2018), 1–39.

https://github.com/lizhuohua/rust-mir-checker
https://github.com/rust-fuzz/trophy-case
https://github.com/rust-fuzz/trophy-case

[5] Marek Baranowski, Shaobo He, and Zvonimir Rakamaric. 2018. Verifying Rust
Programs with SMACK. In Proceedings of the 16th International Symposium on
Automated Technology for Verification and Analysis (ATVA ’18). 528–535.

[6] François Bourdoncle. 1993. Efficient Chaotic Iteration Strategies with Widenings.
In Formal Methods in Programming and their Applications. 128–141.

[7] Guillaume Brat, Jorge A Navas, Nija Shi, and Arnaud Venet. 2014. IKOS: A
Framework for Static Analysis Based on Abstract Interpretation. In International
Conference on Software Engineering and Formal Methods (SEFM ’14). 271–277.

[8] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI ’08). 209–224.

[9] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking
ANSI-C Programs. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’04). 168–176.

[10] CVE Contributors. 2017. CVE-2017-1000430. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-1000430

[11] CVE Contributors. 2019. CVE-2019-15552. https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2019-15552

[12] CVE Contributors. 2019. CVE-2019-15553. https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2019-15553

[13] CVE Contributors. 2019. CVE-2019-16140. https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2019-16140

[14] Crab Contributors. 2021. CoRnucopia of ABstractions: a language-agnostic library
for abstract interpretation. https://github.com/seahorn/crab

[15] MIRAI Contributors. 2021. MIRAI: Rust mid-level IR Abstract Interpreter. https:
//github.com/facebookexperimental/MIRAI

[16] Miri Contributors. 2021. Miri: An interpreter for Rust’s mid-level intermediate
representation. https://github.com/rust-lang/miri

[17] RedoxOS Contributors. 2021. Redox OS. https://www.redox-os.org/
[18] Patrick Cousot and Radhia Cousot. 1976. Static Determination of Dynamic

Properties of Programs. In Proceedings of the 2nd International Symposium on
Programming (ISOP ’76). 106–130.

[19] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL ’77). 238–252.

[20] Patrick Cousot and Radhia Cousot. 1979. Systematic Design of Program Analysis
Frameworks. In Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL ’79). 269–282.

[21] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery of Linear
Restraints among Variables of a Program. In Proceedings of the 5th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL ’78). 84–96.

[22] Mohan Cui, Chengjun Chen, Hui Xu, and Yangfan Zhou. 2021. SafeDrop: Detect-
ing Memory Deallocation Bugs of Rust Programs via Static Data-Flow Analysis.
arXiv:2103.15420 [cs.PL]

[23] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’08).
337–340.

[24] Rob DeLine and Rustan Leino. 2005. BoogiePL: A Typed Procedural Language
for Checking Object-Oriented Programs. Technical Report MSR-TR-2005-70. 13
pages.

[25] Rust For Linux Developers. 2021. Rust for Linux. https://github.com/Rust-for-
Linux

[26] Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2015. Fuzzing the Rust Type-
checker Using CLP. In Proceedings of the 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE ’15). 482–493.

[27] Isil Dillig, Thomas Dillig, and Alex Aiken. 2007. Static Error Detection using
Semantic Inconsistency Inference. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’07).
435–445.

[28] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs as Deviant Behavior: A General Approach to Inferring Errors in
Systems Code. ACM SIGOPS Operating Systems Review 35, 5 (2001), 57–72.

[29] Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. 2020. Is Rust Used
Safely by Software Developers?. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering (ICSE ’20). 246–257.

[30] Jack Garzella, Marek Baranowski, Shaobo He, and Zvonimir Rakamaric. 2020.
Leveraging Compiler Intermediate Representation for Multi- and Cross-Language
Verification. In Proceedings of the 21st International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI ’20). 90–111.

[31] Jean-Yves Girard. 1995. Linear Logic: Its Syntax and Semantics. In Proceedings of
the Workshop on Advances in Linear Logic. 1–42.

[32] Philippe Granger. 1989. Static Analysis of Arithmetical Congruences. Interna-
tional Journal of Computer Mathematics 30, 3–4 (1989), 165–190.

[33] Florian Hahn. 2016. Rust2Viper: Building a Static Verifier for Rust. Master’s thesis.
ETH Zürich.

[34] David Hovemeyer and William Pugh. 2004. Finding Bugs is Easy. ACM SIGPLAN
Notices 39, 12 (2004), 92–106.

[35] Bertrand Jeannet and Antoine Miné. 2009. Apron: A Library of Numerical
Abstract Domains for Static Analysis. In International Conference on Computer
Aided Verification (CAV ’09). 661–667.

[36] Gary A. Kildall. 1973. A Unified Approach to Global Program Optimization. In
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL ’73). 194–206.

[37] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (1976), 385–394.

[38] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization (CGO ’04). 75–86.

[39] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto,
Prabal Dutta, and Philip Levis. 2017. Multiprogramming a 64kB Computer
Safely and Efficiently. In Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP ’17). 234–251.

[40] Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C.S. Lui. 2019. Securing
the Device Drivers of Your Embedded Systems: Framework and Prototype. In
Proceedings of the 14th International Conference on Availability, Reliability and
Security (ARES ’19). 1–10.

[41] M. Lindner, J. Aparicius, and P. Lindgren. 2018. No Panic! Verification of Rust
Programs by Symbolic Execution. In 2018 IEEE 16th International Conference on
Industrial Informatics (INDIN ’18). 108–114.

[42] Peiming Liu, Gang Zhao, and Jeff Huang. 2020. Securing Unsafe Rust Programs
with XRust. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (ICSE ’20). 234–245.

[43] Antoine Miné. 2006. The octagon abstract domain. Higher-Order and Symbolic
Computation 19, 1 (2006), 31–100.

[44] Anders Møller and Michael I. Schwartzbach. 2018. Static Program Analysis.
[45] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A

Verification Infrastructure for Permission-Based Reasoning. In Proceedings of
the 17th International Conference on Verification, Model Checking, and Abstract
Interpretation - Volume 9583 (VMCAI ’16). 41–62.

[46] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 2010. Principles of
Program Analysis. Springer Publishing Company, Incorporated.

[47] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. 2020. Un-
derstanding Memory and Thread Safety Practices and Issues in Real-World Rust
Programs. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’20). 763–779.

[48] Zvonimir Rakamaric and Michael Emmi. 2014. SMACK: Decoupling Source
Language Details from Verifier Implementations. In Proceedings of the 26th Inter-
national Conference on Computer Aided Verification (CAV ’14). 106–113.

[49] Henry Gordon Rice. 1953. Classes of Recursively Enumerable Sets and Their
Decision Problems. Trans. Amer. Math. Soc. 74, 2 (1953), 358–366.

[50] J. Toman, S. Pernsteiner, and E. Torlak. 2015. Crust: A Bounded Verifier for
Rust. In 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’15). 75–80.

[51] Jeff Vander Stoep and Stephen Hines. 2021. Rust in the Android platform. https:
//security.googleblog.com/2021/04/rust-in-android-platform.html

[52] Philip Wadler. 1990. Linear Types Can Change the World!. In Programming
Concepts and Methods.

[53] Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou, and Michael Lyu. 2021.
Memory-Safety Challenge Considered Solved? An In-Depth Study with All Rust
CVEs. arXiv:2003.03296 [cs.PL]

[54] Zeming Yu, Linhai Song, and Yiying Zhang. 2019. Fearless Concurrency?
Understanding Concurrent Programming Safety in Real-World Rust Software.
arXiv:1902.01906 [cs.PL]

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000430
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000430
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15552
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15552
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15553
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15553
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16140
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16140
https://github.com/seahorn/crab
https://github.com/facebookexperimental/MIRAI
https://github.com/facebookexperimental/MIRAI
https://github.com/rust-lang/miri
https://www.redox-os.org/
https://arxiv.org/abs/2103.15420
https://github.com/Rust-for-Linux
https://github.com/Rust-for-Linux
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://arxiv.org/abs/2003.03296
https://arxiv.org/abs/1902.01906

	Abstract
	1 Introduction
	2 Background
	2.1 Static Analysis and Bug-Finding
	2.2 The Rust Programming Language

	3 Motivation
	3.1 Rust Bugs Overview
	3.2 Motivating Examples

	4 Design
	4.1 Methodology
	4.2 Architecture

	5 Abstract Interpretation
	5.1 Language Model
	5.2 Memory Model
	5.3 Abstract Values and Abstract Domain
	5.4 Numerical Analysis
	5.5 Symbolic Analysis

	6 Algorithm
	6.1 CFG Traversal
	6.2 Interprocedural Analysis
	6.3 Verification Conditions for Bug Detectors
	6.4 Eliminating Dead Variables

	7 Implementation
	7.1 Binding External C APIs
	7.2 Converting Abstract Values into SMT Formulas

	8 Evaluation
	8.1 Effectiveness
	8.2 False Positives Suppression
	8.3 Performance

	9 Case Study
	10 Discussion
	11 Related Work
	12 Conclusion
	13 Availability
	Acknowledgments
	References

