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INTRODUCTION
• We address an open problem in online clustering of

bandits, an extension of contextual linear bandits that
groups similar users into clusters, utilizing shared features
to improve learning efficiency.

PROBLEM FORMULATION
• There are u users. Each user i ∈ [u] is associated with an

unknown preference vector θi ∈ Rd.
• The users are separated into m (m ≪ u) disjoint clusters,

such that:
– Users i, j in the same cluster satisfy θi = θj.
– Users i, j from different clusters satisfy

∥∥θi − θj
∥∥ ≥ γ.

• At each round t = 1, 2, . . . , T , the learner receives a user
index it ∈ [u] and a finite set of arms At ⊂ A ⊂ Rd where
|At| = K. Each arm a ∈ A is associated with a fea-
ture vector xa ∈ Rd. The learner assigns an appropriate
cluster Vt for user it, recommends an arm at ∈ At, and
receives a reward rt = xT

atθit + ηt, where ηt is noise.

• Let a∗t = argmaxa∈At
xT
aθit be the optimal arm at time t.

The goal is to minimize the expected cumulative regret:

E[R(T )] = E

 T∑
t=1

(
xT
a∗t
θit − xT

atθit

)
OPEN PROBLEM
• Existing algorithms (Gentile et al., 2014) rely on strong

data diversity assumptions:
1. At each time t, vectors {xa}a∈At

are i.i.d. sampled from
a fixed distribution X with λmin(E[XXT]) = λx;

2. For any unit vector z ∈ Rd, (zTX)2 is σ2-sub-Gaussian
with σ2 ≤ λ2

x

8 log(4K)
.

• Open problem posed by Gentile et al. (2014): Can we
remove the i.i.d. and other statistical assumptions?

• Some follow-up work weakens these assumptions but suf-
fers from deteriorated regret bounds.

CONTRIBUTIONS
• Regret under Weaker Assumptions: We solve the open

problem by proposing UNICLUB and PHASEUNICLUB,
which rely solely on Assumption 1 with regret Õ(

√
T ).

• Removal of i.i.d. Assumption: We remove the i.i.d. as-
sumption by introducing the smoothed adversarial context
setting and proposing SACLUB with regret Õ(

√
T ).

METHODOLOGIES
• Key Idea: Add additional uniform exploration to en-

sure accurate clustering while maintaining low regret.
• UNICLUB: When the cluster gap γ is known

– Use γ to determine when clustering is reliable.
– Uniform exploration until all θi are estimated accurately.

Uniform Exploration UCB Exploration

• PHASEUNICLUB: When the cluster gap γ is unknown
– It is unclear how much uniform exploration is sufficient.
– Divide the time horizon into phases and perform an ap-

propriate amount of uniform exploration in each phase.
– Phase lengths and exploration budgets are carefully de-

signed to balance clustering accuracy and regret.

Phase 1 (23 rounds) Phase 2 (26 rounds)

SMOOTHED ADVERSARIAL CONTEXT SETTING
• Key Idea: The intrinsic diversity of contexts makes ex-

plicit exploration unnecessary.
• Each feature vector is first arbitrarily chosen by an adver-

sary and then perturbed by a noise vector sampled from a
truncated multivariate Gaussian distribution.

• This setup is more practical and aligns more closely with
the original setting of contextual linear bandits.

THEORETICAL RESULTS
Theorem 1. With Assumption 1 and assuming the cluster
gap γ is known, algorithm UNICLUB satisfies:

E[R(T )] = Õ

(
ud

γ2λx
+ d

√
mT

)
.

Theorem 2.With Assumption 1, PHASEUNICLUB satisfies:

E[R(T )] = Õ

 ud

γ5λ2x
+

(
ud

λx

)2
3

T
1
3 + d

√
mT

.

Theorem 3. Under the smoothed adversarial context set-
ting, algorithm SACLUB satisfies:

E[R(T )] = Õ

(
ud

γ2λ̃x
+ d

√
mT

)
,

where λ̃x = C
logK for some constant C.

EVALUATIONS
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