

Towards Efficient Conversational Recommendations: Expected Value of Information Meets Bandit Learning

Zhuohua Li, Maoli Liu, Xiangxiang Dai, John C.S. Lui The Chinese University of Hong Kong

NTRODUCTION

- Recommender systems must adapt to user preferences by learning from feedback, such as click rates.
- Conversational Recommender Systems (CRS) can also proactively query users to obtain additional feedback.

CONVERSATIONAL RECOMMENDATION

EXISTING STUDIES AND MOTIVATION

Expected Value of Information (EVOI):

• Quantifies the value of a query based on its expected improvement in recommendation quality.

Conversational Bandits:

• Models conversational recommendation as a multi-armed bandit problem to balance exploration and exploitation.

Limitations:

- Traditional EVOI adopts a myopic (greedy) strategy and lacks theoretical guarantees for long-term performance metrics.
- Existing conversational bandit algorithms lack a principled

CONTRIBUTIONS: EVOL + CONVERSATIONAL BANDITS Two key techniques:

- 1. Gradient-based EVOI: Replaces expensive Bayesian posterior updates with efficient incremental updates using SGD.
- 2. Smoothed key term contexts: Adds random perturbations to queries to uncover finer-grained user preferences.
- EVOI provides an effective query selection strategy, while conversational bandits offer long-term performance guarantees.

mechanism for selecting informative queries.

PROBLEM FORMULATION

Interaction Protocol:

- For each time step $t = 1, 2, \ldots, T$:
 - The CRS receives a set of arms A_t (i.e., recommendable) items). Each arm $a \in A_t$ is associated with a feature vector $oldsymbol{x}_a \in \mathbb{R}^d$.
 - The CRS selects an arm $a_t \in \mathcal{A}_t$ (i.e., recommend an item), and observes a reward $r_t = \boldsymbol{x}_{a_t}^{\mathsf{T}} \boldsymbol{\theta}^* + \eta_t$ (i.e., whether the user clicks on the item), where θ^* is the unknown user preference vector, and η_t is noise.
 - The CRS optionally initiates a query $k_t \in \mathcal{K}$ and observes an additional reward $\widetilde{r}_t = \boldsymbol{x}_{k_{\star}}^{\mathsf{T}} \boldsymbol{\theta}^* + \widetilde{\eta}_t$, where each query $k \in \mathcal{K}$ is also associated with a feature vector $x_k \in \mathbb{R}^d$.
- The objective is to minimize the cumulative regret:

Two algorithms in Bayesian and frequentist frameworks: 1. ConTS-EVOI: Based on Thompson Sampling (Bayesian). 2. ConUCB-EVOI: Based on LinUCB (frequentist).

THEORETICAL RESULTS

 $R(T) = \sum_{t=1}^{\infty} \left(\max_{a \in \mathcal{A}_t} \boldsymbol{x}_a^{\mathsf{T}} \boldsymbol{\theta}^* - \boldsymbol{x}_{a_t}^{\mathsf{T}} \boldsymbol{\theta}^* \right),$

while using as few queries as possible.

Theorem 1. With probability at least $1 - \delta$, the cumulative regret of ConTS-EVOI scales in $O(d\sqrt{T}\log(T))$.

Theorem 2. With probability at least $1 - \delta$, the cumulative regret of ConUCB-EVOI scales in $O(\sqrt{dT \log(T)} + d)$.

Both algorithms achieve a \sqrt{d} improvement in their dependence on the time horizon T, compared to prior approaches.

EVALUATIONS

