Written by
Li Zhuohua
on
Loewner order
\(
\renewcommand{\vec}[1]{\boldsymbol{#1}}
\DeclareMathOperator*{\E}{\mathbb{E}}
\DeclareMathOperator*{\Var}{\mathrm{Var}}
\DeclareMathOperator*{\Cov}{\mathrm{Cov}}
\DeclareMathOperator*{\argmin}{\mathrm{arg\,min\;}}
\DeclareMathOperator*{\argmax}{\mathrm{arg\,max\;}}
\def\ZZ{{\mathbb Z}}
\def\NN{{\mathbb N}}
\def\RR{{\mathbb R}}
\def\CC{{\mathbb C}}
\def\QQ{{\mathbb Q}}
\def\FF{{\mathbb FF}}
\def\EE{{\mathbb E}}
\newcommand{\tr}{{\rm tr}}
\newcommand{\sign}{{\rm sign}}
\newcommand{\1}{𝟙}
\newcommand{\inprod}[2]{\left\langle #1, #2 \right\rangle}
\newcommand{\set}[1]{\left\{#1\right\}}
\require{physics}
\)
对称矩阵\(A\),\(B\),\(A \succcurlyeq B \Leftrightarrow A-B \succcurlyeq 0\),也等价于\(\forall v, v^T A v \geq v^T B v\)
定理:若\(A \succcurlyeq B\),则\(A,B\)的特征值满足(假设特征值已排序):
\[\lambda_i(A)\geq \lambda_i(B)\]
证明:
根据Courant-Fischer Theorem定理:
\[\lambda_k(A) = \max_{\substack{\text{subspace }S\subseteq \mathbb{R}^n\\ \text{dim} S=k}} \min_{\substack{x\in S\\x\neq 0}} \frac{x^T Ax}{x^T x} \geq \max_{\substack{\text{subspace }S\subseteq \mathbb{R}^n\\ \text{dim} S=k}} \min_{\substack{x\in S\\x\neq 0}} \frac{x^T Bx}{x^T x} = \lambda_k(B)\]